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Abstract

Big Data has increasingly been promoted as a revolutionary development in the future of science, 

including epidemiology. However, the definition and implications of Big Data for epidemiology 

remain unclear. We here provide a working definition of Big Data predicated on the so-called ‘3 

Vs’: variety, volume, and velocity. From this definition, we argue that Big Data has evolutionary 

and revolutionary implications for identifying and intervening on the determinants of population 

health. We suggest that as more sources of diverse data become publicly available, the ability to 

combine and refine these data to yield valid answers to epidemiologic questions will be 

invaluable. We conclude that, while epidemiology as practiced today will continue to be practiced 

in the Big Data future, a component of our field’s future value lies in integrating subject matter 

knowledge with increased technical savvy. Our training programs and our visions for future public 

health interventions should reflect this future.
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The popular and scholarly press has – with considerable excitement – begun using the term 

‘Big Data' to describe the rapid integration and analysis of large-scale information.1–3 

However, a clear definition of Big Data remains elusive, and the ways by which Big Data’s 

advent might shape the future of epidemiologic research and population health intervention 

remain unclear.4 While previous authors have considered the role of Big Data in clinical 

care,2, 5–7 we are herein concerned with its implications for the future of research and 

practice of epidemiology and population health.

BIG DATA: WHAT IS IT?

The characterization of Big Data has evolved since the term was coined in the computer 

science literature in 1997 to refer to data too large to be stored in then-conventional storage 

systems.8 One increasingly accepted7 designation revolves around the ‘3Vs’: high variety, 

high volume, and/or high velocity information assets.9 Under this definition, ‘high variety’ 

refers to the practice of incorporating data collected originally for disparate purposes into a 
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single dataset for combined analysis, such as combining data from electronic medical 

records with purchase histories or social media profile updates.3 ‘High volume’ refers to 

data with orders of magnitude more observations and/or orders of magnitude more variables 

per observation than prior datasets in the domain. And ‘high velocity’ refers to a data 

generation process wherein data are compiled and analyzed in real-time or nearly in real-

time, often by algorithms operating without human intervention.

THE 3 V’S AND EPIDEMIOLOGY

High Variety Data, and Measurement Error

Within epidemiology, variety in data is not new, having long been achieved by merging 

separately collected datasets. In some analyses, high variety datasets are assembled from 

datasets collected independently but intended for epidemiologic inquiry, such as adding 

genomic data to survey responses, or adding environmental data in a gene-environment 

interaction study. In other examples, data are repurposed from repositories of data collected 

initially for other aims, such as New York City’s OpenData initiative.10 As administrative 

data are increasingly made available online, the bureaucratic challenge of merging such 

datasets is decreasing.

Although the increased quantity of data sources presents new opportunities, working with 

secondary data reinforces existing validity challenges. Epidemiologists have established that 

biases due to measurement error are independent of the volume of data.11 However, some in 

the popular press have argued that the sheer quantity of information available in the age of 

Big Data may allow us to accept lower quality data.2 In this context, it may be important for 

epidemiologists to influence the data gathering process to improve the validity of 

administratively collected data. Efforts to use low-quality data almost invariably result in 

calls for relevant data to be recorded accurately7, 12—a strong argument for the involvement 

of epidemiologists at the design stages of administrative data collection systems in an era in 

which almost any data could be fruitfully repurposed for epidemiologic analyses.

High Volume Data, and Analytic Rigor

In addition to increasing the need for rigorous measurement, the increase in the variety of 

data described above will also lead to an increase in data volume, as more variables per 

subject create wider datasets. For example, genomic single nucleotide polymorphism 

microarrays can add thousands of columns per subject to a dataset.13 Similarly, there are 

potentially hundreds of ways to define neighborhoods using geographic information systems 

and US Census data, each articulating different characteristics of social spaces, and so each 

adding a column to the width of the dataset.14

One response to the challenge of increasing dataset width is to use tools that aid with 

variable selection. Analyses testing causal hypotheses may require software to assist with 

developing directed acyclic graphs representing theorized data relations (e.g. DAGitty15). 

Data explorations may use machine learning tools and other emerging technologies for so-

called hypothesis-generating analyses..16
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Technological innovations will likely also enable inclusion of more subjects in studies, 

resulting in taller datasets. Web-based and cellular technologies already enable much 

cheaper recruitment and follow-up of subjects than can telephone-based surveys.17 

Furthermore, as laboratory techniques develop and assay costs decline, molecular 

epidemiologists can enroll more subjects at the same cost,13, and as integration of health 

systems continues, national-scale electronic health records studies will become more 

detailed and powerful.5

Increasing data width may require increased engagement with statistical and computational 

techniques, whereas increasing height may require increased engagement with underlying 

theory and subject matter knowledge to interpret results. It has been long recognized that 

substantive (or background) knowledge is necessary for etiologic inference,18, 19 but the 

need to distinguish between a highly precise finding and a finding with potential clinical or 

interventional importance will increase with population size.20, 21 With a sufficiently large 

analytic population, many statistical interaction terms will be accompanied by low p-values, 

but this does not imply that such information can be used productively to improve 

population health.22

High Velocity Data, and Intervention Optimization

Instantaneous data collection holds promise for public health improvement, even if the 

rapidity with which data can be automatically collected or analyzed is not integral to all 

epidemiologic analysis. Several existing applications use high-velocity data for surveillance. 

For example, Google Flu Trends, which uses data from geo-located web searches to track 

influenza activity,23 has served as an exemplar of a Big Data approach to surveillance, 

although with caveats.24 Similarly, researchers have tracked other outcomes using Google 

search trends25 and developed related systems to track the flu using Twitter.26

Increased data velocity may also be valuable for implementing interventions. This potential 

is particularly true where interventions must be deployed quickly in response to unfolding 

threats to population health and where information is the rate-limiting factor in optimizing 

such interventions. For example, the introduction of cholera to Haiti after the 2010 

earthquake required a major public health response under adverse conditions.27 

Identification of infected subjects and deployment of available oral cholera vaccines would 

have been aided by the use of high-velocity technologies such as cellular networks. In 

practice, unfortunately, no vaccine was deployed in the early stages of the outbreak due to 

the difficulty of identifying the optimal population to vaccinate.28

High data velocity may also enable interventions to be designed with the intent of rapid 

iteration. For example, a program designed to enhance medication adherence might deploy 

pill dispensers equipped with technology to report, via the Internet or cellular networks, 

whether pills were dispensed on schedule.29 Program developers could use this real-time 

technology to test different messaging strategies, using data from these pill dispensers as 

outcomes. Such interventions, which may also be available to any program using social 

media to effect behavioral change,30 are analogous to the A/B testing frameworks that have 

enabled improvement to website user experiences through rapid experimentation.31 These 

experiments, in which users are randomly assigned to one of two web experiences to 
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determine effects of design changes on engagement metrics such as click-throughs or time 

spent at the site, may become valuable as public health messaging moves to web-based 

platforms. Of course, A/B testing must be applied only with sufficient attention to public 

health and research ethics.32

IMPLICATIONS OF BIG DATA FOR TRAINING

The Big Data future will require some epidemiologists to embrace technological skills not 

traditionally within the epidemiology portfolio, particularly computer programming. For 

example, with moderate programming skills and the required permissions, analytic datasets 

can be assembled from publicly available information using web-scraping programs that 

read and compile data from web pages.33 Similarly, public health interventions designed for 

rapid iteration may need to leverage mobile applications or centralized servers to control and 

optimize interventions. A secondary benefit might be to broaden the pathways by which 

trained epidemiologists can improve population health. Many technology entrepreneurs 

build companies to encourage healthy lifestyles (e.g. Noom, RunKeeper, MyFitnessPal) and 

in the process accumulate large repositories of behavioral data. Epidemiologists with the 

skills to engage directly with large-scale data and the methods to analyze it may find 

opportunities to collaborate with such enterprises for both academic and industry benefit.

We caution, however, that any training in software engineering must not come at the cost of 

training in core epidemiologic skills. For example, an analysis intended to determine 

regional variation in stigma due to sexual identity using Twitter would benefit from a 

principal investigator with skills to acquire the data from Twitter directly. However, it is 

more important that such an investigator be able to judge the value of tools to measure 

expressions of stigmatizing views, to formulate an analysis accounting for the fact that 

American users of Twitter are unlikely to represent Americans as a whole, and so on. Given 

the already large amount of material covered by graduate programs in epidemiology, 

computer programming may represent a specialized track of epidemiologic training for those 

who already have substantial expertise in a health-related domain. Increased recruitment of 

epidemiology graduate students from technical fields whose undergraduates rarely enter 

epidemiology today, including computer science, may also help to increase the prevalence 

of these increasingly valuable skills among epidemiologists.

IMPLICATIONS OF BIG DATA FOR PRACTICE

Epidemiology’s metric for success, including any value realized from Big Data, should be 

measured in terms of improvements in population health.34 In the future, metrics may be 

gathered most efficiently using high-velocity technologies. The study of high-velocity 

feedback may then become a core component of the emerging field of implementation 

science.35 For example, before A/B testing can be widely used in messaging-based 

interventions, best practices for its deployment in population health should be developed and 

validated.

By contrast, while epidemiologic practice will benefit from access to higher-volume and 

higher-variety data, such access is unlikely to revolutionize epidemiologic practice in the 

ways that some optimists have suggested,2, 36 such as obviating the need for causal theory, 
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or eliminating classical challenges to validity associated with imperfect data. Therefore, the 

core of epidemiologic practice, that is, understanding the causes of population health and 

optimizing interventions to improve it, will remain conceptually and practically challenging 

in the Big Data era.

CONCLUSIONS

Big Data holds promise to identify population health intervention targets through analysis of 

high volume and high variety data, and to target and refine ensuing interventions using high 

velocity feedback mechanisms (Table 1). An agenda leveraging Big Data’s potential would 

be best led by epidemiologists with skill sets rooted in traditional principles, and who are 

also comfortable with emerging technologies.

Tall, wide, and messy data are already available, but at present such data represent a trickle: 

now is the time to prepare for the oncoming flood. Although epidemiology as practiced 

today will continue to be practiced in a Big Data future, a component of our field’s future 

value lies in integrating subject matter knowledge with increased technical savvy. Our 

training programs and our visions for future public health interventions should reflect that.
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Figure 1. 
Big Data in Historical Context (breakout text box).

Mooney et al. Page 8

Epidemiology. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mooney et al. Page 9

Table 1

Summary of the 3 Vs of Big Data and Their Implications

Name Meaning Examples Opportunities and
Challenges

Implications for
epidemiology and
public health

Volume Datasets with more 
observations

National electronic health 
record databases, social media 
datasets

Power to precisely measure 
unexpected associations, though 
potentially without substantive 
relevance

Evolutionary/incremental

Variety Datasets with variables 
from different sources; 
more variables per 
observation

-omics data, neighborhood data 
added to a phone survey

Capacity to assess complex 
interactions, but more complicated 
variable selection

Evolutionary/incremental

Velocity Data collected and 
analyzed in real-time

Medication adherence 
intervention messaging adapted 
to subject response pattern

Potential to design dynamic 
interventions

Potentially revolutionary
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